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In the setting of real normed spaces, we study the Fermat-Weber problem which
deals with the minimization of the sum of weighted distances from a variable point
to the points of a given finite set A. With techniques of best approximation we
obtain a description of the set of solutions to this problem. Then we characterize
inner product spaces as spaces in which the set of solutions to such problems meets
the affine hull of A. The major tool is a characterization of inner product spaces,
with finite dimension at least three, lying on some property of the exposed points
of the unit ball. © 1994 Academic Press, Inc.

1. INTRODUCTION

The Fermat-Weber problem is an optimization problem associated with
a real normed space X, a finite subset A of X having at least two points,
and a family w = (wa)aE A of positive weights. The function F to minimize
is defined on X by F(x) = La E A wall X - a II. The set of minimizers of F on
X is a (possible empty) bounded closed convex subset of X, denoted by
M",(A). Obviously if w~=kwa with k>O, then M""(A)=M,,,(A). When
w a = 1 for each a, the problem is called the Fermat (location) problem and
the set M w(A) is denoted by M 1 (A). The names of Steiner and Lame are
also associated with this problem (e.g., [7]).

If X is an inner product space, or if X is two dimensional and whatever
the norm is, then M w (A) intersects conv(A), the convex hull of A, for every
subset A and every family w [11, 14]. In the paper we study some recipro­
cal properties with X of dimension at least three. We state for instance that
if, for every A and every w, M w(A) n conv(A) # 0, then X is an inner
product space. The same conclusion holds if, for every A, M 1 (A) n
afT(A) # 0, where afT(A) denotes the affine hull (or span) of A. This last
result shows that an assumption made in [4], according to which M 1 (A)
intersects always afT(A), cannot be valid.

We call hull property for the Fermat (or the Fermat-Weber) problem the
fact that M dA) (or M IV (A» intersects the convex or the affine hull of A,
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for every A (and every w). In Section 2 we show that these four hull
properties are equivalent. Then, in order to obtain the main results, we give
in Section 3 a geometrical description of the set M w (A) and in Section 4,
a characterization of inner product spaces. This characterization is valid for
spaces of finite dimension, at least three. It lies on a property of the set of
exposed points of the unit ball. Section 5 presents the main results. The idea
is roughly to prove that if X, of dimension at least three, is not an inner
product space, then a finite subset A and a family of weights w exist such
that A is included in an open halfspace and the intersection of Mw(A) with
the affine hull of A is either empty or reduced to {O}. This contradicts
some hull property.

Theorem 1 of this paper is more or less known. A partial proof is
presented in [4]. Theorem 2 is given in [5], but a proof using best
approximation theory seems new. To the best of our knowledge a
characterization of finite dimensional inner products spaces, as stated in
Theorem 3, lying on properties of exposed points of the unit ball and
normal cones at these points, cannot be found in the literature. Nothing
similar is in [1]. Besides, the so-called Geometric Lemma in Section 4.3 is
a refinement of Straszewicz's Theorem. Finally, Theorem 4 and its
Corollaries are answers to natural questions. They are related to known
properties of Chebyshev centers [6,9], but cannot apparently be deduced
from them. We tackle our problem by a completely different method.

2. INTERRELATIONS BETWEEN HULL PROPERTIES

THEOREM 1. Let A denote a finite subset of X with at least two points
and w = (wala € A a family of positive numbers. The following are equivalent:

(i) for every A and every w,

(ii) for every A and every w,

(iii) for every A,

(iv) for every A,

Mw(A) n conv(A) # 0;
Mw(A) n aff(A) # 0;
M 1 (A) nconv(A) # 0;
M 1 (A) n aff(A) # 0.

Proof. It is sufficient to prove (ii) = (i) and (iv) = (ii).

(ii) = (i). Let A and w be such that K=Mw(A)naff(A) is non­
empty. Suppose K n conv(A) = 0. These two disjoint nonempty compact
convex sets can be strictly separated by a closed affine hyperplane H. Let
bE K. For each a E A, we call g(a) the intersection of the line joining a and
b with H and we let A'=g(A). For each a'EA', we define A a ' by

A.a , = L w a ·

{a;g(a)~a'l
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We call M,dA') the set of solutions to the problem
minxExLa'EA' Aa' IIx-a'II, By hypothesis, M.l(A')natT(A') is nonempty.

By summing, for all a' e A', the following,

L wallb-all =Aa,llb-a'll + L walla'-all,

{a;g(a)=a'} (a;g(a)=a'}

we get

aEA a'eA' aeA

We now choose b'eM.l(A')natT(A'). Then b'eHnatT(A) and we have,
by using II g(a) - all ~ lib' - all - II g(a) - b'll,

aEA

Since

a'eA' aEA aEA

and

a'eA' a'eA'

we get

aEA a'eA'

aEA aEA

which entails b' e M w(A). Thus b' e K n H, which is impossible, This
contradiction means K n conv(A) #- 0, i.e" M w (A) n conv(A) #- 0.

The idea of this proof is used in [4] to establish (iv) => (iii).

(iv) => (ii) Suppose (iv) holds true and let A be given.
Note initially that A can be assumed included in a ball R(O, r) =

{x; IIxll ~r}. Then Mw(A) is included in R(O,2r) for each w. Indeed let
x ¢ R(O, 2r) : for every a e A, we have IIx - all ~ Illxll-JlaJJJ > r ~ JJaJJ and
then

aEA

This implies clearly M w (A) S; R(O, 2r).

aEA
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Now as a first step we prove that M w (A) n atT(A) # 0 for integer
weights. We first consider the case where, for one aEA, W ii = k, k integer,
k~2 and W a = 1 for each a#a. Let (an, , (a~) be k sequences of points
in atT(A) n B(O, r) such that (1) limn a7 = = limn a~ = a, (2) for each n,
the k points a7, ... , a~ are distinct and do not belong to A\{a}. To the set
An = (A \ {a}) u {a7, ..., an, we associate the function Fn,

Fn(x)= I Ilx-bll = L Ilx-all + I Ilx-a;ll,
beAn a E A, a"# ii 1 ~ j ~ k

and we let

F(x)= I IIx-all +kllx-all·
aeA. Q-=I=ii

Since An C B(O, r) and atT(A n) c atT(A), the optimization problem
minx€xFn(x) has a solution X n in the compact set atT(A)nB(O,2r). The
sequence (xn ) has a subsequence, yet denoted by (xn ), which converges to
xEatT(A)nB(O, 2r). Since Fn converges to Funiformly on B(O, 2r), Fn(xn)
converges to F(x) and xEatT(A) is a solution to the problem minx€xF(x).
The same reasoning works to obtain M w (A) n atT(A) # 0 for integer
weights Wa , and then for rational weights.

As a second step we prove that if M w (A) n atT(A) # 0 for rational
weights, then the same is true for real weights. Indeed if (Wa)a€A is a family
of real positive numbers, we choose, for each a, a sequence (w~n») of
rational positive number which converges to W a • With Fn(x)=
La€A w~n)llx-all and F(X)=La€A wallx-all, the reasoning is the same as
in the first step. The result follows. I

3. A GEOMETRICAL DESCRIPTION OF THE SET OF SOLUTIONS

TO A FERMAT-WEBER PROBLEM

A geometrical description of the set of solutions to a Fermat-Weber
problem may be obtained with techniques from convex analysis (see [5]).
We present here a procedure based on the theory of best approximation.

In order to express more easily the problem in the context of best
approximation, we give the finite set A by A = {au ..., am}(m~2) and we
let w;=waj(l ~i~m). We denote by E the space xm equipped with the
norm.

m

IWII = III (xu ..., xm)lll = I Ilx;ll·
;=1
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The subspace A of E is defined by

A = {'1 = (wlx, ..., wmx); XE X}.

According to the initial definition, x EX belongs to M w (A) if and only
if '1= {wlx, ..., wmx) is a best approximationt to {3=(w 1a l , ..., wmam) from
A in E. Clearly {3 does not belong to A. We can use a classical characteriza­
tion of the set PA ({3) of best approximants to {3 from A [12].

To that end we mention that the dual space E* of E is (x*)m endowed
with the norm

lIIeplll = 11I(f1' ···,fm)lll = max 11.1:1/,
l~i~m

where the norm on the dual X* of X is denoted by II '11. The pamng
between E and E* is defined for ep = (fl, ...,fm) EE* and ~ = (XI' ..., x m) E E
by

m

«ep,O)= L </;,x j ),

i= I

where <., .) denotes the pairing between X and X*. The condition ep E A l­
means «ep, '1 »= 0 for each '1 EA, what is equivalent, for ep = (II' ...,1m), to
L:7'=1 w,./j=O. Let us introduce again a notation. To each epEE*, we
associate the subset r rp of A, which depends on {3,

Then we have the results:

1. IfcpEE* satisfies IIlcplll=1,cpEAl- and rrp#0, then rrp = PA ({3).

2. If P A ({3) is nonempty, then there exists ep EE* satisfying IIlcp III = 1,
epEAl- such that P A ({3)=rrp'

Our task is now to transpose these results in the space X. Let
CP=(fl, ,fm)EE* be such that IIleplll=max I ";j,.;mll/,.II=1. Then
'1 = (wlx, , wmx) is a member of rrp if and only if

m m

L wj<li,ai-x)= L wjllaj-xll·
j= I j= I

Since III,. II ~ 1 for each i, that is equivalent to

'ii= 1, ..., m <Ii' aj-x) = Ilaj-xll·

These conditions are profitably expressed with some cones. For
IEX*, 11/11 ~ 1, we let

N(f)= {ZEX; <f,z)= IIzlI}.
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If Ilfll < 1, then NU) = {O}. If Ilfll = 1, NU) is the (possible empty)
convex cone generated by the face of the unit ball of X given by
{x; IIxll = 1, <f, x) = I}. We can also define NU) as the normal cone to
the unit ball of X* at! Hence, for IIlcplll = 1, (w,x, ..., wmx) is a member of
rcp if and only if

m

XE n (a;-N(/;».
;~,

The theorem sums up the preceding discussion.

THEOREM 2. LetA={a" ...,am}cXandletw;>O(I~i~m).

1. If U" ···,fm)E (x*)m satisfies max,,;;;I,;;;m 11/;11 = 1, L7'~, wJ;=O,
and n7'~, (a; - NUl» # 0, then

mn (a; - N(/;» = M w(A).
i=l

2. If Mw(A) is nonempty, then there exists U" ...,fm)E(x*)m
satisfying max1,;;;;,;;;m Ilf;11 = 1 and 1:7'=1 wl/;=O such that

m

Mw(A)= n (a;-N(/;».
1=1

Paper [3] gives sufficient and necessary conditions such that z is a point
of MdA) with restrictive assumptions: 1. z does not belong to A nor is on
any line determined by points of A, 2. X is finite dimensional and its unit
ball is smooth and rotund. Actually Theorem 2 implies these results of [3],
as a particular case.

Remark 1. As an immediate consequence of Theorem 2, we can give
some information about unicity of the solution to a Fermat-Weber
problem. An obvious sufficient condition such that M w (A) contains no
more than one point, is that it is defined as n7'=, (a; - N(f, », with at least
two cones N(/;) being non-colinear halflines. In fact NU) is a halfline if
Ilfll = 1 and if the hyperplane <f, z) = 1 meets the unit ball of X at one
point.

Remark 2. Let P; (1 ~ i ~ m) be positive numbers. If we have a; E NU; )
for /; E X*, II/; II ~ 1, then Pia; E N(/;). It follows from Theorem 2 that, if A
is the set {PI a" ..., Pmam}, then 0 E M w(A) if and only if 0 E M w(A).
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4. CHARACTERIZATION OF INNER PRODUCT SPACES WITH

FINITE DIMENSION AT LEAST THREE

The results of this section seem to have their own interest.

167

4.1. Notations and First Results

In the whole section, X is a real finite dimensional space, of dimension I,
in which Band S are the unit ball and the unit sphere. In the dual space
X*, B* and S* are the unit ball and the unit sphere. The pairing between
X and X* is denoted by <" .). Let J denote the duality mapping for X:

J(x) = {peX*; <p, x) = Ilpllllxll and Ilpll = Ilxll }.

For xeS, J(x) is nothing else than the subdifferential of the norm IIII at x.
If H is a hyperplane of X, then H+ denotes anyone of the two open

halfspaces defined by H. If D is a convex subset of X, then ri(D) denotes
the relative interior of D, i.e., the interior of D in aff(D).

Let C be a bounded closed convex subset of X and suppose x e e. Then
x is called an extreme point of C if x=(I-t)y+tz with O<t<I,yEC
and z e C, entails y = z. The point x is called an exposed point of C if there
is pEE* such that <p,x» <p,y) whenever x#-y and yee. The linear
functional p is said to expose x in e. The normal cone to C at x, Nt: (x),
is defined by

Nt: (x) = {peX*;VyeC, <p,x-y)~O}.

If x belongs to the boundary of C, then N~ (x) generates a vector space
of dimension at least 1. If this dimension is I, then x called a vertex of e.
We denote the set of extreme points of C by ext(C), the set of exposed
points of C by exp(C), and the set of vertices of C by ver(C). We obviously
have ver(C) c exp(C) c ext( C).

Remark 3. If x is an exposed point of B and if p e s* belongs to
ri(N;(x)), then the cone N(p)={yeX;<p,y)=IIYII} is reduced to the
halfline with origin at 0 and passing through x.

4.2. Theorem

The following theorem gives a characterization of inner product spaces
with finite dimension at least three, depending on some property of the
exposed points of the unit ball.

THEOREM 3. Let X be as in Section 4.1. with I~ 3. The following are
equivalent:

(i) X is an inner product space, i.e., its norm is deduced from an inner
product on X;
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(ii) for every hyperplane H and for every finite subset A included in
H+ n exp(B), we have

o¢conv( U ri(J(a)));
aE A

(iii) for every hyperplane H and for every finite subset A included in
H+ n exp(B), we have

Remark 4. For a E S, NZ (a) is the cone generated by the subset J(a).
Thus condition in (ii) (resp. in (iii)) can be equivalently written
o ¢ conv(U aE A ri NZ (a)) (resp. 0 ¢ conv(U aEA NZ (a)\ {O}).

Remark 5. Such a characterization of inner product spaces is not valid
in an infinite dimensional space. Indeed, in co(N), exp(B) is empty and
therefore statements (ii) and (iii) of Theorem 3 are true. If X is two-dimen­
sional, then statements (ii) and (iii) of Theorem 3 are always true.

In Theorem 3, the implications (i) => (ii) => (iii) and (iii) => (ii) are
obvious. In order to prove the implications (ii) => (i), we need some
preliminary results. We give now a Geometrical Lemma and a Corollary,
and we will continue the proof of Theorem 3 in Section 4.4.

4.3. A Geometrical Lemma

It is well known that the set exp(C) is dense in ext(C) (see [13, Thm.
11.6]). A stronger approximation result can be obtained with exp(C) in
ext(C)\ver(C), which concerns also the normal cones at these points. After
submitting this paper, I learned that a result of the same nature had been
obtained independently by Klee [10].

GEOMETRICAL LEMMA. Let X be finite-dimensional. Let C be a bounded
closed convex subset of X with a nonempty interior. Let X o E ext( C)\ver(C),
Po E N~ (xo) n S*, and I' > O. Then there exist y E exp( C), y ¥ x, and
qEN~(y)nS* such that

IIxo- yll <I' and Ilpo - qll < e.

Obviously the above property is not satisfied if Xo is a vertex of C.

Proof We suppose that X is identified with IR /, endowed with its
canonical scalar product. The words "projection" and "orthogonal" must
be understood in reference to this scalar product.
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We assume X o = 0 and we denote by k the dimension of the vector space
generated by N~ (0). Since 0 Eext(C)\vert(C), we have 1~ k ~1- 1. It is
sufficient to consider poEri(N~(O))nS*.

Let G be the hyperplane <Po, z> =0 and let L be the projection of
N~(O) on G. Since P is in ri(N~(O)), L is a subspace of G of dimension
k-1.

The point 0 is an extreme point of the convex set G n C. Note that if 0
is an exposed point of GnC, then GnC={O}. In any case we have
(q, x >~ 0 for each x EG n C and each q EL. Let qo E G n S*, orthogonal
to L and belonging to N~nC<O). For A>O, let G;, be the hyperplane in X
orthogonal to the vector Po + Aqo. Then the closed halfspace G-: with
boundary G;" which contains Po, meets C along a convex set D;, (a slice of
C). The set D;, has a nonempty interior, otherwise the cone N~(O) is of
dimension k + 1. According to [2], the set of p which expose a point of D;,
is dense in X*. Thus for 13 > 0 there are y ED;, n G-: and q, which exposes
yin D;" such that Ilq - Po - Aqoll < 13/2. Clearly q exposes y in C. The family
(DJbo is a nonincreasing family of compact sets such that nbOD;,=
{O}. Hence the diameter of D;, tends to 0 as Atends to O. It is possible to
choose A< 13/2 such that the diameter of D;, is less than e. Then we have

y#O,

and q exposes y in C. I
IIyll <13,

COROLLARY. Let X be finite-dimensional. Let C be a bounded closed
convex subset of X with a nonempty interior. Then there is a countable subset
L1 of ext(C) such that,Jor each x Eext( C), each p EN~ (x) n S*, and each 13,
there exist y E L1 and q E Nt: (y) n S* such that

IIx- YII <13 and IIp-qll <e.

Proof We note first that ver(C) is countable [13, Thm. 11.2]. Then we
let

R l = ((x,p) ECx S*; XE ext(C)\ver(C), p EN~(x)}

and

R 2 = {(X,p)E C X S*; xEexp(C), p EN~(x)}.

From the geometric lemma we deduce that, in vicinity of each point of
R l' there is a point of R 2 • Since C and S* are metric compact, for each n
we can cover R 1 with a finite numbers of subsets
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Let L n be the finite set of points (X2,P2)ER2 obtained in this manner.
The set

L1 = ver( C) u ( YL n )

has the desired property. I

4.4. Proof of Theorem 3

We prove the implication (ii) -+ (i) in three steps. We use, at the end,
a characterization of inner product spaces due to James [8J (see
[1, (12.9)J), which is as follows. If, in real normed space X of dimension
at least three, for every hyperplane H, there exists u i= 0 such that
IIx + tull ~ IIxll for each x E Hand t E lR, then X is an inner product space.

Let H be a hyperplane in X. Suppose statement (ii) of Theorem 3 holds
true.

First Step. For a start we establish the following result. If (An) is an
increasing sequence of finite subsets of exp(B) n H+, then there exists u E S
such that, for each a E Un An and each p E J(a), <p, u) ~ O.

Indeed, from (ii), we deduce, by using a separation theorem, that, for
each n there exists Un E S such that <p, un) ~ 0 for each a E An and each
pEJ(a). By compactness of S, there is a subsequence of Un which converges
to UE S. We consider now the subsets (An) and the vectors (un) associated
to this subsequence. Let a E Un An; then, for n great enough, a belongs to
An and, for p E J(a), <p, un) ~ 0, hence <p, u) ~ O.

Second step. We can apply the result of the first step to the countable
set introduced in the preceding Corollary. Let us say that a E S satisfies the
property Jl(u) if, for each p E J( a), we have <p, u) ~ O. The first step gives
a vector u E S such that every member of L1 n H+ satisfies Jl(u).

First every member of ext(B) n H+ satisfies Jl(u). This is a consequence
of the property of L1 given in the Corollary.

Then every member of SnH+ satisfies Jl(u). Indeed, let aESnH+.
According to the Krein-Milman theorem, there exist a finite subset
{a l> ..., ah} of ext(B) and positive numbers 0( I' ... , O(h (I.7= 1 O(j = 1) such that
a=L7~1 O(jai • There is at least one j(1 ~j~h) with ajEH+, otherwise
a¢H+. Let pEJ(a). Then 1=(p,a)=L7~IO(i(p,a). This entails
<p, ai ) = 1 for each i, i.e., pEJ(a;). Particularly, pEJ(aj ) where
aj E ext(B) n H+. Hence, we have (p, u) ~ O. This means that a satisfies
Jl(u).

Third Step. We know that each member of S n H+ satisfies Jl(u). Let
aESnH+ and pEJ(a). For A.>O, we have

Ila+ Aull ~ <p, a+Au) = <p, a) +A<p, u) = 1 + A<p, u).
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Thus we have, for aE S n H+ and A~ 0, IIa + AU II ~ 1. The same is true
if a belongs to S n H. Let -b E S n H+. Then we have, for A. ~ 0,
II-b + Aull ~ 1. Hence lib - AU II ~ 1 and the same is true if b belongs to
S n H. Then we have Ilx + tull ~ 1, for each XES n Hand t E R

This is James' condition, which entails that X is an inner product space.

5. THE MAIN RESULTS

In the whole section X is assumed to be of dimension at least three.

THEOREM 4. If, for every subset A with three or four elements and every
family W= (Wa)aeA ofpositive weights. we have Mw(A) n aff(A) ¥ 0. then X
is an inner product space.

Proof Suppose X is not an inner product space. Then X has a three­
dimensional subspace Y which is not an inner product space.

First Step. In this first step everything will take place in Y. Let B( Y)
be the unit ball of Y. According to Theorem 3 and Remark 4, there exist
a hyperplane H in Yand a finite subset Ao in exp(B( Y) n H+ such that
oE conv (U aeAo ri N;(y) (a». Due to the Caratheodory Theorem, there are
a subset A of Ao with four or fewer points, positive weights Wa , and vectors
PaEri(N;(y) (a», (aEA) such that O=LaeA waPa' From Remark 3 we
deduce that naeA (a-N(Pa»= {O}. It follows from Theorem 2 that the
problem minyeyLaeA Wally-all has a unique solution: {O}. Choose then
Pa> 0 such that all points ii = Paa are in the same affine hyperplane
parallel to H and let A be the set for which points are the ii. Due to
Remark 2, the problem minyeyLadwally-iill has the unique solution:
{O}. Note finally that A cannot be reduced to a singleton or to a pair of
points.

Second Step. We are now in the whole space X. Then, for the subset
A and the associated weights exhibited in the first step, M w (4) is either
empty or does not meet the subspace Yor meets Yalong the singleton {O}.
Hence M w (A)naff(A)=0. I

Remark 6. It would be sufficient in Theorem 4 to assume that the
hypothesis M w (A) n aff(A) # 0 works only for subsets A with three or
four elements and families (wa) such that Mw(A) is reduced to a singleton.

As an immediate consequence of Theorem 1 and Theorem 4, we obtain

COROLLARY 1. If one of the hull properties (i.e., the equivalent
statements of Theorem 1) holds true, then X is an inner product space.
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We consider finally a condition which look like a characterization of
inner product spaces related to the Chebyshev radius [6, 9]. Let us intro­
duce a notation. If A is a finite set in X and Z a subspace of X, we let

mx(A)= inf L Ilx-all
xeX aeA

and

mz(A) = inf L IIx- all·
xeZ aeA

The following result may be compared with (15.1) in [1].

COROLLARY 2. If, for every two-dimensional subspace Z of X and for
every finite set A in Z, we have mx(A) = mz(A), then X is an inner product
space.

Proof We suppose that X has a three-dimensional subspace Y which
is not an inner product space. Because of Corollary 1 there exists a
finite subset A in Y such that Mi(A), the set of solutions to
minyEyLad Ily-all, does not meet afT(A). Therefore afT(A) is an affine
subspace of dimension at most two. We may assume, modulo a translation,
that afT(A) is included in a two-dimensional linear subspace Z of X. Then
my(A)<mz(A). Since mx(A)~my(A), we get mAA)<mz(A). I

It would be worthwhile to develop the comparison between properties of
the Chebyshev radius and Chebyshev centers and properties related to the
Fermat problem.
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